Discussion

"Unemployment and Mismatch in the UK" by Jennifer Smith

Thijs van Rens University of Warwick

Bank of England and Institute for Macroeconomics Conference on Monetary Policy and Macroeconomics

Unemployment, productivity and potential output: the aftermath of the crisis

11-12 October 2012

Unemployment and Mismatch in the UK

Jennifer Smith (2012)

- How important is mismatch unemployment in the UK?
- Contributions of the paper
 - It is not about the US
 - Measure contribution mismatch to unemployment dynamics
 - Oecompose into effects on job finding and job loss
- Findings
 - Mismatch was important in the GR (half of increase unemployment)
 - Effect on job loss is larger and more persistent than effect on job finding

Unemployment and Mismatch in the UK

Jennifer Smith (2012)

- How important is mismatch unemployment in the UK?
- Contributions of the paper
 - ① It is not about the US:-)
 - Measure contribution mismatch to unemployment dynamics:-)
 - Oecompose into effects on job finding and job loss :-(
- Findings
 - Mismatch was important in the GR (half of increase unemployment)
 - Effect on job loss is larger and more persistent than effect on job finding

Unemployment dynamics

Unemployment depends on job loss, job finding and past unemployment

$$u_{t+1} = u_t + \underbrace{s_t (1 - u_t)}_{\text{job loss}} - \underbrace{f_t u_t}_{\text{job finding}}$$

Importance of the past depends on turnover

$$u_{t+1} = \rho_t \bar{u}_t + (1 - \rho_t) u_t$$

where

$$\rho_t = f_t + s_t
\bar{u}_t = \frac{s_t}{f_t + s_t}$$

Log-linear approximation

$$\Delta \log u_{t+1} = \rho \underbrace{\left(1-u\right)\left(d\log s_t - d\log f_t\right)}_{\text{change in steady state}} + \left(1-\rho\right) \underbrace{d\log u_t}_{\text{dynamics}}$$

Unemployment dynamics: Why this matters

• Importance of the past depends on turnover

$$\begin{split} \Delta \log u_{t+1} &= \rho\underbrace{\left(1-u\right)\left(d\log s_t - d\log f_t\right)}_{\text{change in steady state}} + \left(1-\rho\right)\underbrace{\frac{d\log u_t}{\text{dynamics}}}_{\text{dynamics}} \\ &= \rho\left(1-u\right)\left(d\log s_t - d\log f_t\right) \\ &+ \left(1-\rho\right)\rho\left(1-u\right)\left(d\log s_{t-1} - d\log f_{t-1}\right) \\ &+ \left(1-\rho\right)^2\rho\left(1-u\right)\left(d\log s_{t-2} - d\log f_{t-2}\right) + \dots \end{split}$$

 Turnover anywhere else is lower than in the US (data: Elsby, Hobijn and Şahin)

• US:
$$\rho = 0.575 + 0.036 = 0.611 \ (t_{1/2} = 1.6 \text{ months})$$

$$\bullet$$
 UK: $ho = 0.133 + 0.010 = 0.143 \ (t_{1/2} = 7 \ {
m months})$

$$\bullet$$
 Italy: $ho = 0.041 + 0.004 = 0.045 \ (t_{1/2} = 22 \ \text{months})$

Unemployment dynamics: Mismatch

- Mismatch lowers the job finding rate
 - 'Optimal' allocation

$$\frac{v_1}{u_1} = \frac{v_2}{u_2} = \dots = \frac{v_N}{u_N}$$

- Mismatch: suboptimal distribution of u_i (given v_i)
- Unemployment dynamics propagate this effect

$$\begin{split} \Delta \log u_{t+1} &= \rho\underbrace{\left(1-u\right)\left(d\log s_t - d\log f_t\right)}_{\text{change in steady state}} + \left(1-\rho\right)\underbrace{\frac{d\log u_t}{\text{dynamics}}}_{\text{dynamics}} \\ &= \rho\left(1-u\right)\left(d\log s_t - d\log f_t\right) \\ &+ \left(1-\rho\right)\rho\left(1-u\right)\left(d\log s_{t-1} - d\log f_{t-1}\right) \\ &+ \left(1-\rho\right)^2\rho\left(1-u\right)\left(d\log s_{t-2} - d\log f_{t-2}\right) + \dots \end{split}$$

Other measures of mismatch

- Mismatch lowers the job finding rate
 - · 'Optimal' allocation

$$\frac{v_1}{u_1} = \frac{v_2}{u_2} = \dots = \frac{v_N}{u_N}$$

- Mismatch: suboptimal distribution of u_i (given v_i)
- Mismatch across industries, geographic areas, occupations (Şahin, Song, Topa and Violante)
- Measure mismatch directly from dispersion in job finding rates $f\left(\frac{v_i}{u_i}\right)$ (Barnichon and Figura; Herz and van Rens)
 - Longer time series, compare to previous recessions
 - Sources of mismatch (worker mobility, job mobility, wage setting)
 (Herz and van Rens)

Decomposition effects on job finding and job loss

• Unemployment depends on job loss, job finding and past unemployment

$$u_{t+1} = u_t + \underbrace{s_t \left(1 - u_t \right)}_{\text{job loss}} - \underbrace{f_t u_t}_{\text{job finding}}$$

- For fluctuations, job loss matters as much as job finding (Fujita and Ramey)
- But mismatch affects only job finding
 - [Effect on s_t] \equiv [dynamic effect on u_t] [static effect on f_t]
 - Interpretation is confusing
 - "newly unemployed take longer to find jobs"
 - $s_t = EU_t/(1-u_t)$, but why would EU_t be unaffected?

Concluding

- Studying mismatch in the UK is interesting
 - Compare the results to those to the US
 - Previous studies using UK data (Şahin, Song, Topa and Violante; Barnichon and Figura)
- Dynamics are (potentially) important
 - Compare to static exercise
 - Explore importance dynamics for alternative measures of mismatch
- Decomposition into job finding and job loss is not helpful