"Modelling Technology Adoption and Technical Efficiency in Maize Production in Rural Ethiopia" by Abebayehu Geffersa, Frank Agbola and Amir Mahmood

Thijs van Rens University of Warwick, visiting UNSW

31st PhD Conference in Economics and Business

University of New South Wales

Sydney, 2 November 2018

Technology Adoption and Technical Efficiency

in Maize Production in Ethiopia

Discussion:

- What does this paper do?
 - Document some very interesting patterns in the data
 - Exercise could be more transparent
- What do we learn from that?
 - Contribute to a very important 'big question'
 - There is more to learn from these data than is in the paper

Technology Adoption and Technical Efficiency

in Maize Production in Ethiopia

Discussion:

- What does this paper do?
 - Document some very interesting patterns in the data
 - Exercise could be more transparent
- What do we learn from that?
 - Contribute to a very important 'big question'
 - There is more to learn from these data than is in the paper

Does technology adoption increase efficiency?

- Ethiopia, 2011
 - Improved Maize Varieties (IMV), adoption rate 35%
 - Survey \approx 2,500 maize-producing farm households (cross-sectional)

Variables	Definition	Improved	Local
		Maize (N=	maize
		1954)	(N=409)
		Mean	Mean
Maize Output	Total maize yield (in kg)		876.80
		2821.80	(1634.4
		(21121.50)	0)
Inputs:			
Labour	Family and hired labour (in male-	38.12	29.12
	days)	(41.61)	(79.44)
Land	Area for maize cultivation, in hectare	0.91	0.6
		(0.86)	(0.9)

• Maize output of farmer *i*

• Technology frontier equation

$$\ln Y_i^* = f(X_i;\beta) + v_i$$

- $X_i = labour$, land, fertilizer, ...
- v_i = production inputs outside of farmer's control (weather, ...) ~ *i.i.d.N*
- Technological efficiency equation

$$u_i = \alpha_0 + Z'_i \delta - \theta \ IMV_i + \omega_i$$

- Z_i = farmer's human capital, farm quality, wealth and information
- $u_i > 0 \sim i.i.d.$ truncated N

Thijs van Rens (Warwick)

• Maize output of farmer *i*

Substituting

$$\ln Y_{i} = \underbrace{f(X_{i};\beta) + v_{i}}_{\text{technology frontier}} - \underbrace{\alpha_{0} - Z'_{i}\delta + \theta \ IMV_{i} - \omega_{i}}_{\text{technical inefficiency}}$$

• Maize output of farmer *i*

Substituting

$$\ln Y_i = \underbrace{f(X_i; \beta) + v_i}_{\text{technology frontier}} - \underbrace{\alpha_0 - Z'_i \delta + \theta \ IMV_i - \omega_i}_{\text{technical inefficiency}}$$

• Suggestion 1: Estimate this equation (also) with OLS

- \bullet Intercept α_0 biased with OLS, but not interesting nor credibly identified
- MLE is (slightly) more efficient, but requires more assumptions
- Transparency is important!

Thijs van Rens (Warwick)

• Maize output of farmer *i*

- Suggestion 1: Estimate this equation (also) with OLS
- Suggestion 2: Think about parameter estimates, not 'TE scores'
 - Technical Efficiency (TE)

$$u_i = \alpha_0 - Z'_i \delta + \theta \ IMV_i - \omega_i$$

- ω_i not identified (error term is $v_i + \omega_i$)
- Mean TE is not interesting, differences are (between adopters and non-adopters, between regions, etc.)
- Transparency is important!

• Maize output of farmer *i*

- Suggestion 1: Estimate this equation (also) with OLS
- Suggestion 2: Think about parameter estimates, not 'TE scores'
- Econometric issues
 - IMV_i is endogenous (selection) \Rightarrow PSM
 - Heterogeneous technology

$$\ln Y_{i} = \underbrace{f(X_{i};\beta_{1}) + f(X_{i};\beta_{2}) * IMV_{i} + v_{i}}_{\text{technology frontier}} - \underbrace{\alpha_{0} - Z_{i}'\delta + \theta IMV_{i} - \omega_{i}}_{\text{technical inefficiency}}$$

Does technology adoption increase efficiency?

Table 8: Average Treatment Effect of INIV on TE								
Technology assumption			IMV growers (treated)	Local maize growers (control)	Difference			
Homogenous technology assumed for IMV and local maize	ATT	Unmatched	0.683	0.588	0.095***			
		Matched	0.684	0.596	0.088 * * *			
	# of	On support	1578	313				
	farmers							
		Off support	5	0				
Different technologies	ATT	Unmatched	0.675	0.624	0.051***			
		Matched	0.675	0.632	0.043***			
		On support	1578	313				
		Off support	5	0				

Table 8: Average Treatment Effect of IMV on TE

Notes: * p<0.1, ** p<0.05, *** p<0.01.

SE stands for robust standard error. psmatch2 command in Stata 14 was used for matching.

Conclusion: IMV adoption increases maize output by 4.3%

Technology Adoption and Technical Efficiency

in Maize Production in Ethiopia

Discussion:

- What does this paper do?
 - Document some very interesting patterns in the data
 - Exercise could be more transparent
- **2** What do we learn from that?
 - Contribute to a very important 'big question'
 - There is more to learn from these data than is in the paper

The big question & contribution of this paper

- Why low technology adoption in agriculture in SSA?
 - Agriculture important part of the economy, food security is an issue
 - Widely available technologies dramatically increase yields (adoption $\approx 100\%$ in other countries)
- Answer: costs and benefits are heterogeneous (Suri, Ema 2011)
 - Poor infrastructure, credit constraints, lack of commitment devices, information barriers, learning
 - Absolute and comparative advantage in production efficiency
- This paper:
 - Examine link between technology adoption and production efficiency

The big question & contribution this paper

- Why low technology adoption in agriculture in SSA?
 - Agriculture important part of the economy, food security is an issue
 - Widely available technologies dramatically increase yields (adoption $\approx 100\%$ in other countries)
- Answer: costs and benefits are heterogeneous (Suri, Ema 2011)
 - Poor infrastructure, credit constraints, lack of commitment devices, information barriers, learning
 - Absolute and comparative advantage in production efficiency
- This paper:
 - Examine link between technology adoption and production efficiency
 - Suggestion 3: Document heterogeneity in effect adoption on efficiency (Who has a comparative advantage in adopting IMV?)

Heterogeneity in effect technology adoption on efficiency

Estimation equation

$$\ln Y_i = f(X_i, IMV_i; \beta_1, \beta_2) + v_i - \alpha_0 - Z'_i \delta + \theta IMV_i - \omega_i$$

- $\theta = \text{average effect of adoption}$
- $\beta_2 =$ difference in technology between adopters and non-adopters
- $\delta =$ determinants of efficiency (adopters and non-adopters)
- Suggestion 4: Extended estimation equation

 $\ln Y_i = f(X_i, IMV_i; \beta_1, \beta_2) + v_i - \alpha_0 - Z'_i \delta + \theta_0 IMV_i + (Z_i * IMV_i)' \theta_1 - \omega_i$

- $\theta_1 = \text{difference in effect adoption across characteristics farm(er)}$
- Who has comparative advantage in IMV adoption?
- Econometric issues
 - PSM makes control and treatment group similar
 - Suggestion 5: Selection model? (PS equation is the selection equation)

Other comments (for the author)

- Clean up the writing! Many typos, and hard to understand what you are doing.
- Robust standard errors cannot solve endogeneity issue (p.11)
- Gamma estimate (p.14, footnote 11): How is σ_u identified from σ_v ? Does this assume that $\sigma_\omega = 0$? If not, is that a reasonable assumption?
- Robustness checks need to be reported somewhere, e.g. in an appendix. Cannot just claim that e.g. you estimated the model using a Cobb-Douglas specification and the results were similar.
- Main result (ATT) should be in the abstract, instead of minor result (effect covariates).
- Discuss covariates in the preferred specification instead of in the homogeneous technology one.