Discussion: Gold Rush Fever in Business Cycles (P. Beaudry, F. Collard and F. Portier)

Thijs van Rens CREI and Universitat Pompeu Fabra

November 16, 2006

1 Gold Rush Fever in Business Cycles

by Paul Beaudry, Fabrice Collard and Franck Portier

Punchline:

A large part of business cycle fluctuations in output and hours can be explained by 'gold rush fever'

Contributions:

- 1. (Re)document facts about business cycles
 - Large part of output volatility driven by transitory shocks that do not affect consumption
- 2. Model of market rushes
 - A new candidate shock that satisfies the above facts
- 3. Empirical support for market rush shocks:
 - (a) Model fits the data well
 - (b) Market rush shocks explain a large part of output variability
 - (c) Contribution market rush shocks robust to including other shocks in the model

2 The model

- A standard RBC economy
 - Homogeneous consumption good
 - Production requires capital and labor
 - Consumers are infinitely lived and can smooth consumption by borrowing and lending capital
 - All markets are perfectly competitive
 - Balanced growth preferences
- A pie club
 - Each period a pie (of fixed size) drops out of the sky
 - The pie is distributed equally to members of the pie club
 - Membership of the pie club is restricted

- Pie rush shock: unusually large number of memberships being issued
- Pie club membership
- Increase in aggregate output, consumption does not respond
- Rent seeking

- Pie rush shock: unusually large number of memberships being issued
- Pie club membership
 - Each period, $\eta_t N_t$ new memberships are issued, where η_t is stochastic
 - A member is expelled with probability $\mu = E\eta_t$
 - To apply for a new membership, candidates must burn one unit of pie (which was produced in the RBC economy)
 - Lottery among applicants determines new members
 - Free entry into the *lottery*

$$1 = \rho_t V_t = \frac{\eta_t N_t}{S_t} V_t, \text{ where } V_t = \beta E_t \sum_{\tau=0}^{\infty} \frac{\beta^{\tau} \left(1 - \mu\right)^{\tau} u'(c_{t+\tau+1})}{u'(c_t)} \frac{\tilde{\pi}_0}{N_{t+\tau+1}}$$

- Increase in aggregate output, consumption does not respond
- Rent seeking

- Pie rush shock: unusually large number of memberships being issued
- Pie club membership

$$1 = \rho_t V_t = \frac{\eta_t N_t}{S_t} V_t, \text{ where } V_t = \beta E_t \sum_{\tau=0}^{\infty} \frac{\beta^{\tau} \left(1 - \mu\right)^{\tau} u'\left(c_{t+\tau+1}\right)}{u'\left(c_t\right)} \frac{\tilde{\pi}_0}{N_{t+\tau+1}}$$

- Increase in aggregate output, consumption does not respond
 - (a) Non-members: y =, c =
 - (b) Unsuccessful applicants: $y \uparrow$, c =
 - (c) Successful applicants: $y \uparrow \uparrow$, $c \uparrow$
 - (d) Old club members: $y \downarrow$, $c \downarrow$
- Rent seeking

- Pie rush shock: unusually large number of memberships being issued
- Pie club membership

$$1 = \rho_t V_t = \frac{\eta_t N_t}{S_t} V_t, \text{ where } V_t = \beta E_t \sum_{\tau=0}^{\infty} \frac{\beta^{\tau} \left(1 - \mu\right)^{\tau} u'(c_{t+\tau+1})}{u'(c_t)} \frac{\tilde{\pi}_0}{N_{t+\tau+1}}$$

- Increase in aggregate output, consumption does not respond
- Rent seeking
 - High private benefits from applying to the club (restricted membership)
 - Socially wasteful: increased output is burned

7 Pie rush versus market rush

- BCP market rush = pie rush
 - Intermediate goods producers make positive profits

$$\Pi_{t}(j) = [P_{t}(j) - 1] X_{t}(j) = \frac{1 - \chi}{\chi} X_{t}$$

- Exogenous restriction on free entry in intermediate goods market
- No effect on value added of more varieties \Rightarrow investments in new startups are wasteful
- High private benefits are transfer from existing to new intermediate goods producers

$$\Pi_t(j) = \pi_0 \Theta_t N_t^{\frac{\xi - 1 + (1 - \alpha)/\chi}{\alpha}} h_t = \frac{\pi_0 \Theta_t h_t}{N_t}$$

- No meaningful interaction between market rush and RBC economy
- Plausible?
- Consistent with the data?

- Calibrate & estimate
- Evaluate credibility and quantitative importance market rush shocks
 - Test model fit
 - Evaluate contribution market rush shocks to volatility output
 - Compare to alternative shocks/models

- Calibrate & estimate
 - Minimum distance estimator matches VAR impulse responses
 - Estimate: variances shocks and persistence shocks and model
 - Calibration likely to affect the (limited information) estimates
 - (Relative) size of the 'pie' seems crucial

$$\Pi_t(j) = \frac{\pi_0 \Theta_t h_t}{N_t}, \text{ where } \pi_0 = \left(\frac{1-\chi}{\chi}\right) \left(\chi \left(1-\alpha\right)\right)^{1/\alpha}$$

- "We assume markups of 20%, so that $\chi = 0.833$."
- Evaluate credibility and quantitative importance market rush shocks
 - Test model fit
 - Evaluate contribution market rush shocks to volatility output
 - Compare to alternative shocks/models

- Calibrate & estimate
- Evaluate credibility and quantitative importance market rush shocks
 - Test model fit
 - * Three sets of overidentifying restrictions (Hansen J-test or by hand)
 - (a) IRFs from VAR with SR restriction (versus LR restriction)
 - (b) IRFs consumption (versus output)
 - (c) Business cycle moments for investment, hours and labor productivity
 - Evaluate contribution market rush shocks to volatility output
 - Compare to alternative shocks/models

11 The data

- There are (components of) shocks that
 - do not affect consumption or long run output
 - introduce strong short run fluctuations in output (and hours)

- Calibrate & estimate
- Evaluate credibility and quantitative importance market rush shocks
 - Test model fit
 - Evaluate contribution market rush shocks to volatility output
 - * Variance decomposition structural shocks
 - * Not all (candidate) shocks are included
 - * Reduced form estimates with identified shocks?
 - How can (wasteful) market rush shocks explain 57% of the volatility of hours in the LR? (LR restriction as in Gali would attribute to negative productivity shocks)
 - Compare to alternative shocks/models

- Calibrate & estimate
- Evaluate credibility and quantitative importance market rush shocks
 - Test model fit
 - Evaluate contribution market rush shocks to volatility output
 - Compare to alternative shocks/models
 - * What does identification come from? Consumption!
 - * Can combination of other shocks replicate consumption response? (transitory productivity shock + preference shock)
 - * Government expenditure shocks?
 - Need additional testable predictions (overidentifying restrictions)
 "a set of properties that any good model of fluctuations should explain"

14 Concluding

- Very interesting and relevant research agenda
 - What type of shocks drive business cycle fluctuations?
- Plausible story with interesting implications
 - Output volatility may be partly driven by rent seeking
 - Implications for e.g. costs of the business cycle
- Empirical assessment careful but ultimately not completely convincing
 - Wider set of moments would help distinguish between competing explanations
 - Unexplored testable predictions for e.g. inequality
- Quantitative importance open question

3d meeting of the Applied Macroeconomics Network (AMeN) - Barcelona - November 16, 2006